AI oder Analytics - muss man dies überhaupt unterscheiden?

21.05.2019

AI ITGAIN - wir bringen Sie weiter.

Auch wenn einige Darstellungen des Themas im Internet suggerieren, dass mittels Cloud-basierter Lösungen die Einbindung von A.I. jedem Unternehmen offen steht, so steckt unserer Meinung nach doch mehr dahinter. So sind zum Beispiel Daten oft ausreichend vorhanden, nur liegen diese ggf. nicht in der richtigen Form vor, oder es gibt keine Anbindung der notwendigen Quellen.

Zur Sache:

Ohne Zweifel hat das erst mal überhaupt nichts mit A.I. zu tun, sondern hier geht es um die Vorrausetzungen, um überhaupt A.I. einzusetzen zu können. Diesbezüglich sind Unternehmen verschieden weit, aber dank themenübergreifender Kompetenzen begleiten wir Sie bei all diesen Phasen, umso die notwendigen Anforderungen umzusetzen, damit Ihrer A.I.-Strategie nichts mehr im Wege steht.

Eine erste Hürde stellt oft schon die monetäre Bewertung einer A.I.-Strategie dar. Konkret bedeutet das, abzuwägen wie viel eine solche Umsetzung kostet versus den Mehrwert den sie bietet. Ohne Zweifel lässt das Budget bei vielen Unternehmen keine maßgeschneiderten Lösungen zu, was bedeutet, dass eine Lösung möglichst viele Standard-Komponenten verwenden muss. Dies setzt aber voraus, dass sich Use Cases bei Unternehmen ausreichend überlappen.

Das ist ein weiteres Beispiel dafür, dass es wichtig ist, Unternehmen durch den gesamten Prozess zu begleiten, und nicht nur bei der konkreten Implementierung, um die erfolgreiche Umsetzung von A.I.-Projekten zu gewährleisten. Denn eins ist allerdings nahezu unstrittig, nämlich das sehr oft A.I. Wettbewerbsvorteile bietet und die eigentliche Frage ist, wieviel A.I. benötigt ein Unternehmen und nicht ob überhaupt.

Da A.I. nicht auf spezielle Bereiche beschränkt ist, sind Use Cases eigentlich nur durch den eigenen Einfallsreichtum beschränkt. Nehmen wir zum Beispiel an, ein Unternehmen möchte mit vorhandenen Daten analysieren, ob ein Kunde demnächst kündigt oder nicht („Churn Prevention“), um entsprechende Maßnahmen vorzeitig zu ergreifen. Mittels A.I. ist es möglich, Modelle zu entwickeln, die bei Eingabe der Kundendaten eine Wahrscheinlichkeit ausgeben, dass ein Kunde kündigen könnte.

Gerade für eingeschränkte Budgets sind einfach zu bedienende Werkzeuge,

wie z.B. KNIME, von unschätzbarem Wert, da sie erlauben, ähnlich ITL-Strecken, A.I.-Workflows grafisch zu modellieren, ohne viel Expertenwissen. Trotz der geringen Hürde ist es aber auch hier notwendig, den Prozess mit Erfahrung begleiten zu lassen um den ersten Erfolg sicherzustellen. ITGAIN ist KNIME-Partner und verfügt über langjährige Erfahrung im Bereich A.I.-Prozesse mit KNIME.

Eine Herausforderung ist auch die Schnelllebigkeit von Technologien im A.I.-Umfeld, sodass die ITGAIN bestrebt ist, auch intern Pilotprojekte durchzuführen, um frühzeitig das Potenzial neuer Trends nachhaltig zu evaluieren.

Aber es gibt auch ein Leben nach der A.I., in dem Sinne, dass nach der Umsetzung die Arbeit noch lange nicht beendet ist.

Was bedeutet das konkret? Wie jede andere Software, muss auch das A.I.-Modell gewartet werden und es muss Prozesse geben, um Updates einzuspielen, aber auch um Modelle zu ersetzen, und/oder alte Modelle in Rente zu schicken. Dieser Punkt wird oft vernachlässigt, da das Thema Infrastruktur für A.I. noch recht jung ist. Dies ist auch zu beachten.

Ein weiterer, wichtiger Punkt ist auch das Ausrollen der Software, oder anders formuliert die Integration und Inbetriebnahme der Modelle in vorhandene Lösungen. Gerade in der Industrie kann dieser Prozess bedeuten, dass hunderte von „Zielknoten“ involviert sind.  Hier können Sie auf ITGAIN Lösungen zurückgreifen, welche aufgrund langjähriger Erfahrung im Bereich „Managed Services“ und „Software Engineering“ entstanden sind.

Interesse und oder Fragen? Dann kontaktieren Sie uns gerne unter more.about@itgain.de.